Информационная безопасность полна парадоксов, один из них это однобокая эволюция методов и приемов противостояния нападающей и обороняющейся стороны.
Информационная безопасность полна парадоксов, один из них это однобокая эволюция методов и приемов противостояния нападающей и обороняющейся стороны. Развиваются только технологии нападения, а вот защита застыла на технологиях прошлого века, а точнее прошлого тысячелетия. Причин много, но главная, мозги защитников ИБ прикормленные «халявными» деньгами перестали думать.
Пора встряхнуться, для начала о основе информационной безопасности,- методах защиты информации. Защищают информацию с древних времен криптографическими преобразованиями (шифрацией), о шифрации больших объемов информации и надежности процесса шифрования пойдет речь в данной статье.
Криптографическое преобразование по ГОСТ 28147-89 используется для поточного шифрования информации в каналах связи и на накопителях информации (дисках).
В настоящее время повсеместно применяется программная реализация данного ГОСТ на РОН центрального процессора. В известных методах реализации ГОСТ вся секретная информация (ключи шифрования, блоки замен) размещаются в оперативной памяти.
Это снижает надежность шифрования, поскольку, имея дамп оперативной памяти, можно полностью выявить все секретные элементы криптопреобразования.
Кроме этого, метод имеет ограничения по быстродействию, обусловленные расположением основных объектов криптопреобразования в ОП и неполной загрузкой исполнительных устройств ALU. Современные процессоры, реализуя криптопроцедуру по известному методу могут обеспечить реальную скорость шифрования на уровне 10-30 мегабайт в секунду.
Основной причиной низкого быстродействия и слабой защищенности криптопреобразования является программная реализация блока подстановок. Вот как он описан в официальном документе ГОСТ 28147-89 :
По п. 1.2. ГОСТ этот блок реализует тетрадные (по четыре бита) перестановки в 32битном слове, но архитектура процессора х86/64 и его система команд не способна эффективно манипулировать тетрадами.
Для программной реализации блока подстановок используют специальные таблицы в оперативной памяти подготавливаемые на этапе инициализации криптофункции. Эти таблицы объединяют узлы замен смежных тетрад в байтовые таблицы размером 8х8 бит, таким образом в оперативной памяти размещается четыре 256 байтных таблицы.
В более продвинутых реализациях эти таблицы имеют размер 1024 байта (256 слов по четыре байта). Это сделано для того, чтобы реализовать в этих таблицах дополнительно циклический сдвиг на 11 позиций полученного в результате подстановки 32 битного слова (следующая операция алгоритма преобразования по ГОСТ).
Информация блока подстановок является секретным компонентом криптофункции, вот как это сформулировано в официальном документе ГОСТ 28147-89:
Размещение этих таблиц с ключами блока подстановок в ОП противоречит требованиям ГОСТ 28147-89 п.1.7., поскольку секретная информация становится доступной для сторонних программ, работающих на вычислительной установке. ФСБ, сертифицирующая в том числе и программные реализации шифрования по ГОСТ 28147-89 на данное нарушение смотрит мягко говоря снисходительно. Если для размещения ключей в ОП ФСБ еще требует наличия «фигового листочка», в виде маскирования ключей операцией XOR, то для блоков замен в ОП ничего не требуется, они хранятся в открытом виде.
ФСБ пропускает такие программные реализации криптопроцедуры, несмотря на явное снижение стойкости такого решения и прямое нарушение собственных требований по ГОСТ 28147-89 п.1.7..
И это не смотря на общеизвестные методы взлома шифров через съём дампа памяти….
Современные процессоры архитектуры х86/64 имеют в своем составе набор регистров SSE размером 16 байт и специализированные FPU (как минимум два) для выполнения различных операций над этими регистрами. Возможна реализация ГОСТ 28147-89 на этом оборудовании, причем в этом случае узлы замены можно размещать не в виде таблиц в оперативной памяти, а непосредственно на выделенных SSE регистрах.
На одном SSE регистре можно разместить сразу две таблицы из 16 строк. Таким образом, четыре SSE регистра позволят полностью разместить все таблицы замен. Единственным условием такого размещения является требование чередования, согласно которому тетрады одного байта должны помещаться в разные SSE регистры. Кроме этого целесообразно размещать младшие и старшие тетрады входных байтов соответственно в младших и старших тетрадах байтов SSE регистров.
Эти требования обуславливаются оптимизацией под имеющийся набор AVX команд.
Таким образом, каждый байт SSE регистра будет содержать две тетрады, относящиеся к разным байтам входного регистра блока подстановок, при этом позиция байта на SSE регистре однозначно соответствует индексу в таблице замены блока подстановки.
Схема одного из возможных размещений узлов замены на SSE регистрах показана на рисунке:
Размещение секретной информации узлов замен на SSE регистрах повышает защищенность криптопроцедуры, и скорости его работы.
Для эффективной выборки из SSE регистров тетрад используется имеющиеся в составе блоков FPU многовходовые байтовые коммутаторы. Эти коммутаторы позволяют осуществлять пересылки из любого байта источника в любой байт приемника, по индексам находящемся в специальном индексном SSE регистре. Причем параллельно выполняется пересылка для всех 16 байт SSE регистра- приемника.
Имея узлы хранения подстановок на SSE регистрах и многовходовый коммутатор в блоках FPU можно организовать следующее преобразование в блоке подстановок:
В этой схеме входной регистр в каждой тетраде задает адрес для соответствующего коммутатора, который по шине данных передает из накопителей узлов замены информацию в выходной регистр.
Работой коммутаторов управляет специальная трехадресная команда AVX VPSHUFB. Первый операнд которой является приемником информации из коммутаторов, второй операнд является источником, к которому подключены входы коммутаторов, а третий операнд является управляющим регистром для коммутаторов, каждый байт которого ассоциирован с соответствующим коммутатором и значение в нем задает номер направления с которого коммутатор считывает информацию. Вот описание этой команды из официальной документации фирмы Интел:
А вот схема работы этой команды, – изображена только половина SSE регистров, для второй половины все аналогично:
Коммутатор использует только младшие четыре бита для определения направления коммутации, последний бит в каждом байте используется для принудительного обнуления соответствующего байта приемника, но эта функция коммутатора в нашем случае пока не востребована.
Регистры SSE можно разбивать на равные части и выполнять над этими частями одинаковые преобразования одной командой. Нас интересует пакетный режим с разбивкой SSE регистра на четыре 32битных блока, это дает возможность одной процессорной командой параллельно обрабатывать сразу четыре блока по 32 бита, т.е. в параллель рассчитывать четыре блока данных.
В современных процессорах имеется как минимум два блока FPU и для их полной загрузки можно использовать два потока независимых команд. Если грамотно чередовать команды из независимых потоков, то можно загрузить работой оба блока FPU полностью и получить сразу восемь параллельно обрабатываемых потоков данных. Если кому интересно, то пример реализации алгоритма на Ассемблере есть в приложении в конце статьи.
Использование SSE регистров для хранения узлов замены дает гарантию изоляции секретной ключевой информации, а вот увеличение скорости криптофункции на FPU это неочевидно. Поэтому были проведены замеры времени выполнения стандартных процедур по методу прямой замены в соответствии с ГОСТ 28147-89 для четырех потоков и для восьми потоков.
Для четырех потоков была получена скорость выполнения 472 процессорных тактов. Таким образом, для процессора с частотой 3,6 Ггц один поток считается со скоростью 59 мегабайт в секунду, а четыре потока соответственно со скоростью 236 мегабайт в секунду.
Для восьми потоков была получена скорость выполнения 580 процессорных тактов. Таким образом, для процессора с частотой 3,6 Ггц один поток считается со скоростью 49 мегабайт в секунду, а восемь потоков соответственно со скоростью 392 мегабайт в секунду.
Для дальнейшей оптимизации нелишне помнить о наличие 256 битных регистров (YMM регистры), используя которые можно теоретически еще удвоить скорость вычислений. Но пока это только перспектива, на данный момент процессора очень сильно замедляются, когда выполняют 256 битные инструкции (FPU имеют ширину тракта 128 бит). Эксперименты показали, что на современных процессорах счет в 16 потоков на YMM регистрах выигрыша не даёт. Но это только пока, на новых моделях процессоров несомненно будет увеличено быстродействие 256 битных команд и тогда использование 16 параллельных потоков станет целесообразно и приведет к еще большему увеличению скорости работы криптопроцедуры.
Теоретически можно рассчитывать на скорость 600-700мегабайт в секунду при наличии в процессоре двух FPU с шириной рабочего тракта 256 бит каждый.
Как это ни странно, встроенное в процессора шифрование по AES алгоритму оказывается значительно медленнее, тесты показывают скорость на уровне 100-150 мегабайт в секунду, и это при аппаратной реализации алгоритма! Там проблема опять в однопоточном счете и блоке замен, который оперирует байтами (таблица из 256 строк). Так что ГОСТ оказывается эффективнее AES в реализации на архитектуре х86/64, кто бы мог подумать…
Описанный выше алгоритм шифрования по ГОСТ уже не теория, он внедрен в коммерческий продукт. Фирма «Код Безопасности» данный алгоритм реализации ГОСТ 28147-89 использовала в своем коммерческом продукте – Криптошлюзе «Континент», результатом внедрения стало существенное повышение пропускной способности шифрованных каналов связи. Сейчас начинается этап сертификации модернизированного изделия.
Недавно фирма Интел анонсировала новый процессор для многопоточных вычислений «Xeon Phi». Данный процессор используется в составе ускорителя Knights Corner:
Ускоритель содержит более 60 процессорных ядер в каждом из которых находится блок вычислений с длинной операндов 512бит. Это позволяет на одном процессорном ядре вычислять сразу 16 блоков данных.
А всего на 60 ядрах можно одновременно считать более 700 блоков, скорость понятно будет меньше чем на обычном процессоре, из-за тактовой частоты в 1Ггерц (пока). Но теоретически можно рассчитывать на пропускную способность одного такого шифратора в диапазоне 10-16 Гбайт в секунду, или более 100Гбит/сек сетевого трафика, а это уже скорости магистральных каналов пакетной передачи трафика.
Сейчас начаты работы с предсерийным образцом ускорителя Knights Corner, проблем много, но все они преодолимы. Пока ПО поставляемое вместе с этим ускорителем не может обеспечить нормальной загрузки ускорителя для задачи криптопреобразования. Требуется полная переработка внутренней ОС ускорителя и написание собственных скоростных драйверов обмена информации между памятью ускорителя и ОП хостовой системы.
Если будет добрая воля фирмы Интел поделиться технической информаций, думаю к лету этот ускоритель начнет работать в качестве шифратора, причем этот шифратор будет «мечтой…ФСБ» поскольку вся ключевая информация и программы преобразований будут храниться в этом «черном ящике», внутри ускорителя (во внутренней флеш-памяти) и они не могут быть считаны/модифицированы программными средствами Хоста.
В заключении хочу обратить внимание на один аспект принципиальный проблемы поточного шифрования, – попытки протаскивания западного алгоритма AES вместо отечественного ГОСТ 28147-89. До настоящего времени это оправдывалось низкой скоростью реализации отечественного алгоритма шифрования.
Но как следует из вышеизложенного отечественный метод шифрования в предложенной реализации на SSE регистрах не только быстрее, но и надежнее западного метода. Посмотрим, как события будут развиваться далее…
SSE0, SSE1, SSE6, SSE7 содержат поочередно накопители1 и накопители2 (восемь накопителей по 4 байта каждый)
Сначала готовятся индексные регистры для работы коммутатора
Пример кода не оптимизирован по быстродействию, но максимально удобен для понимания.
Ключи шифрования находятся в ОП, но можно и загружать в неиспользуемые регистры процессора (MMX).
В статье мы расскажем о наиболее интересных стартапах в области кибербезопасности, на которые следует обратить внимание.
Хотите узнать, что происходит нового в сфере кибербезопасности, – обращайте внимание на стартапы, относящиеся к данной области. Стартапы начинаются с инновационной идеи и не ограничиваются стандартными решениями и основным подходом. Зачастую стартапы справляются с проблемами, которые больше никто не может решить.
Обратной стороной стартапов, конечно же, нехватка ресурсов и зрелости. Выбор продукта или платформы стартапа – это риск, требующий особых отношений между заказчиком и поставщиком . Однако, в случае успеха компания может получить конкурентное преимущество или снизить нагрузку на ресурсы безопасности.
Ниже приведены наиболее интересные стартапы (компании, основанные или вышедшие из «скрытого режима» за последние два года).
Компания Abnormal Security, основанная в 2019 году, предлагает облачную платформу безопасности электронной почты, которая использует анализ поведенческих данных для выявления и предотвращения атак на электронную почту. Платформа на базе искусственного интеллекта анализирует поведение пользовательских данных, организационную структуру, отношения и бизнес-процессы, чтобы выявить аномальную активность, которая может указывать на кибератаку. Платформа защиты электронной почты Abnormal может предотвратить компрометацию корпоративной электронной почты, атаки на цепочку поставок , мошенничество со счетами, фишинг учетных данных и компрометацию учетной записи электронной почты. Компания также предоставляет инструменты для автоматизации реагирования на инциденты, а платформа дает облачный API для интеграции с корпоративными платформами, такими как Microsoft Office 365, G Suite и Slack.
Копания Apiiro вышла из «скрытого режима» в 2020 году. Ее платформа devsecops переводит жизненный цикл безопасной разработки «от ручного и периодического подхода «разработчики в последнюю очередь» к автоматическому подходу, основанному на оценке риска, «разработчики в первую очередь», написал в блоге соучредитель и генеральный директор Идан Плотник . Платформа Apiiro работает, соединяя все локальные и облачные системы управления версиями и билетами через API. Платформа также предоставляет настраиваемые предопределенные правила управления кодом. Со временем платформа создает инвентарь, «изучая» все продукты, проекты и репозитории. Эти данные позволяют лучше идентифицировать рискованные изменения кода.
Axis Security Application Access Cloud – облачное решение для доступа к приложениям , построенное на принципе нулевого доверия. Он не полагается на наличие агентов, установленных на пользовательских устройствах. Поэтому организации могут подключать пользователей – локальных и удаленных – на любом устройстве к частным приложениям, не затрагивая сеть или сами приложения. Axis вышла из «скрытого режима» в 2020 году.
BreachQuest, вышедшая из «скрытого режима» 25 августа 2021 года, предлагает платформу реагирования на инциденты под названием Priori. Платформа обеспечивает большую наглядность за счет постоянного отслеживания вредоносной активности. Компания утверждает, что Priori может предоставить мгновенную информацию об атаке и о том, какие конечные точки скомпрометированы после обнаружения угрозы.
Cloudrise предоставляет услуги управляемой защиты данных и автоматизации безопасности в формате SaaS. Несмотря на свое название, Cloudrise защищает как облачные, так и локальные данные. Компания утверждает, что может интегрировать защиту данных в проекты цифровой трансформации. Cloudrise автоматизирует рабочие процессы с помощью решений для защиты данных и конфиденциальности. Компания Cloudrise была запущена в октябре 2019 года.
Cylentium утверждает, что ее технология кибер-невидимости может «скрыть» корпоративную или домашнюю сеть и любое подключенное к ней устройство от обнаружения злоумышленниками. Компания называет эту концепцию «нулевой идентичностью». Компания продает свою продукцию предприятиям, потребителям и государственному сектору. Cylentium была запущена в 2020 году.
Компания Deduce , основанная в 2019 году, предлагает два продукта для так называемого «интеллектуального анализа личности». Служба оповещений клиентов отправляет клиентам уведомления о потенциальной компрометации учетной записи, а оценка риска идентификации использует агрегированные данные для оценки риска компрометации учетной записи. Компания использует когнитивные алгоритмы для анализа конфиденциальных данных с более чем 150 000 сайтов и приложений для выявления возможного мошенничества. Deduce заявляет, что использование ее продуктов снижает ущерб от захвата аккаунта более чем на 90%.
Автоматизированная платформа безопасности и соответствия Drata ориентирована на готовность к аудиту по таким стандартам, как SOC 2 или ISO 27001. Drata отслеживает и собирает данные о мерах безопасности, чтобы предоставить доказательства их наличия и работы. Платформа также помогает оптимизировать рабочие процессы. Drata была основана в 2020 году.
FYEO – это платформа для мониторинга угроз и управления доступом для потребителей, предприятий и малого и среднего бизнеса. Компания утверждает, что ее решения для управления учетными данными снимают бремя управления цифровой идентификацией. FYEO Domain Intelligence («FYEO DI») предоставляет услуги мониторинга домена, учетных данных и угроз. FYEO Identity будет предоставлять услуги управления паролями и идентификацией, начиная с четвертого квартала 2021 года. FYEO вышла из «скрытого режима» в 2021 году.
Kronos – платформа прогнозирующей аналитики уязвимостей (PVA) от компании Hive Pro , основанная на четырех основных принципах: предотвращение, обнаружение, реагирование и прогнозирование. Hive Pro автоматизирует и координирует устранение уязвимостей с помощью единого представления. Продукт компании Artemis представляет собой платформу и услугу для тестирования на проникновение на основе данных. Компания Hive Pro была основана в 2019 году.
Израильская компания Infinipoint была основана в 2019 году. Свой основной облачный продукт она называет «идентификация устройства как услуга» или DIaaS , который представляет собой решение для идентификации и определения положения устройства. Продукт интегрируется с аутентификацией SSO и действует как единая точка принуждения для всех корпоративных сервисов. DIaaS использует анализ рисков для обеспечения соблюдения политик, предоставляет статус безопасности устройства как утверждается, устраняет уязвимости «одним щелчком».
Компания Kameleon , занимающаяся производством полупроводников, не имеет собственных фабрик и занимает особое место среди поставщиков средств кибербезопасности. Компания разработала «Блок обработки проактивной безопасности» (ProSPU). Он предназначен для защиты систем при загрузке и для использования в центрах обработки данных, управляемых компьютерах, серверах и системах облачных вычислений. Компания Kameleon была основана в 2019 году.
Облачная платформа безопасности данных Open Raven предназначена для обеспечения большей прозрачности облачных ресурсов. Платформа отображает все облачные хранилища данных, включая теневые облачные учетные записи, и идентифицирует данные, которые они хранят. Затем Open Raven в режиме реального времени отслеживает утечки данных и нарушения политик и предупреждает команды о необходимости исправлений. Open Raven также может отслеживать файлы журналов на предмет конфиденциальной информации, которую следует удалить. Компания вышла из «скрытого режима» в 2020 году.
Компания Satori, основанная в 2019 году, называет свой сервис доступа к данным “DataSecOps”. Целью сервиса является отделение элементов управления безопасностью и конфиденциальностью от архитектуры. Сервис отслеживает, классифицирует и контролирует доступ к конфиденциальным данным. Имеется возможность настроить политики на основе таких критериев, как группы, пользователи, типы данных или схема, чтобы предотвратить несанкционированный доступ, замаскировать конфиденциальные данные или запустить рабочий процесс. Сервис предлагает предварительно настроенные политики для общих правил, таких как GDPR , CCPA и HIPAA .
Компания Scope Security недавно вышла из «скрытого режима», будучи основана в 2019 году. Ее продукт Scope OmniSight нацелен на отрасль здравоохранения и обнаруживает атаки на ИТ-инфраструктуру, клинические системы и системы электронных медицинских записей . Компонент анализа угроз может собирать индикаторы угроз из множества внутренних и сторонних источников, представляя данные через единый портал.
Основным продуктом Strata является платформа Maverics Identity Orchestration Platform . Это распределенная мультиоблачная платформа управления идентификацией. Заявленная цель Strata – обеспечить согласованность в распределенных облачных средах для идентификации пользователей для приложений, развернутых в нескольких облаках и локально. Функции включают в себя решение безопасного гибридного доступа для расширения доступа с нулевым доверием к локальным приложениям для облачных пользователей, уровень абстракции идентификации для лучшего управления идентификацией в мультиоблачной среде и каталог коннекторов для интеграции систем идентификации из популярных облачных систем и систем управления идентификацией. Strata была основана в 2019 году.
SynSaber , запущенная 22 июля 2021 года, предлагает решение для мониторинга промышленных активов и сети. Компания обещает обеспечить «постоянное понимание и осведомленность о состоянии, уязвимостях и угрозах во всех точках промышленной экосистемы, включая IIoT, облако и локальную среду». SynSaber была основана бывшими лидерами Dragos и Crowdstrike.
Traceable называет свой основной продукт на основе искусственного интеллекта чем-то средним между брандмауэром веб-приложений и самозащитой приложений во время выполнения. Компания утверждает, что предлагает точное обнаружение и блокирование угроз путем мониторинга активности приложений и непрерывного обучения, чтобы отличать обычную активность от вредоносной. Продукт интегрируется со шлюзами API. Traceable была основана в июле 2020 года.
Компания Wiz, основанная командой облачной безопасности Microsoft, предлагает решение для обеспечения безопасности в нескольких облаках, рассчитанное на масштабную работу. Компания утверждает, что ее продукт может анализировать все уровни облачного стека для выявления векторов атак с высоким риском и обеспечивать понимание, позволяющее лучше расставлять приоритеты. Wiz использует безагентный подход и может сканировать все виртуальные машины и контейнеры. Wiz вышла из «скрытого режима» в 2020 году.
Работает на CMS “1С-Битрикс: Управление сайтом”
best cc sites for carding fresh shop cc